Potential-Aware Imperfect-Recall Abstraction with Earth Mover's Distance in Imperfect-Information Games

نویسندگان

  • Sam Ganzfried
  • Tuomas Sandholm
چکیده

There is often a large disparity between the size of a game we wish to solve and the size of the largest instances solvable by the best algorithms; for example, a popular variant of poker has about 10 nodes in its game tree, while the currently best approximate equilibrium-finding algorithms scale to games with around 10 nodes. In order to approximate equilibrium strategies in these games, the leading approach is to create a sufficiently small strategic approximation of the full game, called an abstraction, and to solve that smaller game instead. The leading abstraction algorithm for imperfect-information games generates abstractions that have imperfect recall and are distribution aware, using k-means with the earth mover’s distance metric to cluster similar states together. A distribution-aware abstraction groups states together at a given round if their full distributions over future strength are similar (as opposed to, for example, just the expectation of their strength). The leading algorithm considers distributions over future strength at the final round of the game. However, one might benefit by considering the trajectory of distributions over strength in all future rounds, not just the final round. An abstraction algorithm that takes all future rounds into account is called potential aware. We present the first algorithm for computing potential-aware imperfectrecall abstractions using earth mover’s distance. Experiments on no-limit Texas Hold’em show that our algorithm improves performance over the previously best approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Imperfect Recall Games (Doctoral Consortium)

Imperfect recall games remain an unexplored part of the game theory, even though recent results in abstraction algorithms show that the imperfect recall might be the key to solving the immense games found in the real world efficiently. Our research objective is to develop the first algorithm capable of outperforming the state-of-the-art solvers applied directly to perfect recall games, by creat...

متن کامل

Extensive-Form Game Imperfect-Recall Abstractions With Bounds

Imperfect-recall abstraction has emerged as the leading paradigm for practical large-scale equilibrium computation in incomplete-information games. However, imperfect-recall abstractions are poorly understood, and only weak algorithm-specific guarantees on solution quality are known. In this paper, we show the first general, algorithm-agnostic, solution quality guarantees for Nash equilibria an...

متن کامل

Imperfect-Recall Abstractions with Bounds

We develop the first general, algorithm-agnostic, solution quality guarantees for Nash equilibria and approximate self-trembling equilibria computed in imperfect-recall abstractions, when implemented in the original (perfect-recall) game. Our results are for a class of games that generalizes the only previously known class of imperfect-recall abstractions where any results had been obtained. Fu...

متن کامل

An Algorithm for Constructing and Solving Imperfect Recall Abstractions of Large Extensive-Form Games

We solve large two-player zero-sum extensive-form games with perfect recall. We propose a new algorithm based on fictitious play that significantly reduces memory requirements for storing average strategies. The key feature is exploiting imperfect recall abstractions while preserving the convergence rate and guarantees of fictitious play applied directly to the perfect recall game. The algorith...

متن کامل

Combining Incremental Strategy Generation and Branch and Bound Search for Computing Maxmin Strategies in Imperfect Recall Games

Extensive-form games with imperfect recall are an important model of dynamic games where the players are allowed to forget previously known information. Often, imperfect recall games are the result of an abstraction algorithm that simplifies a large game with perfect recall. Unfortunately, solving an imperfect recall game has fundamental problems since a Nash equilibrium does not have to exist....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014